References

Bonnett. R., Charalambides, A. A.. Hursthousc, M. B.. Malik, K. M. A., Nicolaidou, P. \& Sheldrick, G. M. (1979). J. Chem. Soc. Perkin Trans. 1, pp. 488-495.
Burla, M. C., Camalli, M., Cascarano, G.. Giacovazzo, C.. Polidori. G.. Spagna, R. \& Viterbo, D. (1989). J. Appl. Crust. 22, 389-393.

Cardellini. L.. Carloni, P.. Damiani, E., Greci, L., Stipa, P.. Rizrola, C. \& Sgarabotto, P. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 769-773.
Cliffe, W. H. (1933). J. Chem. Soc. pp. 1327-1331.
Johnson. C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Knoevenagel. E. (1921). Ber. Dtsch Chem. Ges. 54, 1722-1730
Molecular Structure Corporation (1985). MSC/AFC Diffructometer Control Soffware. MSC, 3200 Research Forest Drive. The Woodlands. TX 77381, USA.
Molecular Structure Corporation (1993). TEXSAN. Cṛstal Structure Analysis Package. Version 1.6. MSC, 3200 Research Forest Drive. The Woodlands, TX 77381, USA.
Murray. J. T., Short. W. F. \& Stansfield. R. (1933). J. Am. Chem. Soc. 55, 2805-2806.
Obodovskaya, A. E., Starikova, Z. A., Ivanov, Y. A. \& Pokrovskaya. 1. E. (1985). Zh. Strukt. Khim. 26, 93-95.

Obodovskaya. A. E.. Starikova, Z. A., Shikhalicv, K. S., Ivanov. Y. A.. Shmyreva. Z. V. \& Pokrovskaya. I. E. (1990). Kristallografiva, 35. 687-692.
Reddclien, A. \& Thurm. A. (1932). Ber. Dtsch Chem. Ges. 65. 15111521.

Rosowsky, A. \& Modest. E. J. (1965). J. Org. Chem. 30. 1832-1837. Zachariasen. W. H. (1968). Acta Cryst. A24, 212-216.

Acta Cryst. (1998). C54, 980-982

A (\pm)-Cyclocytidine Analogue with a Lowanti Conformation around the Glycosyl Bond

Hirofumi Ohishi, Hidehito Urata, Masao Akagi and Ken-ichi Tomita
Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan. E-mail: ohishi@oysun01.oups.ac.jp

(Received 7 August 1997; accepted 6 January 1998)

Abstract

The crystal structure of the cytidine analogue (\pm)-6,6'-anhydro-2'-deoxy- $6,6^{\prime} \beta$-dihydroxycarbacytidine hydrate (alternative name: 3-amino-7-hydroxy-6-hydroxymethyl-6,7,8,8a-tetrahydro- $1 \mathrm{H}, 5 \mathrm{a} H$-cyclopenta $\left[1^{\prime}, 2^{\prime}: 1,2\right]$ ox-azolo[3,2-c]pyrimidin-1-one hydrate), $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, in which the glycosyl torsion angle was fixed by cyclization between the C^{\prime} atom of the cyclopentane ring and the C 6 atom of the cytosine base with one O

atom, was determined by X-ray analysis. The crystal belongs to the monoclinic spacc group $P 2_{1} / c$ and the unit cell contains four cytidine analogue and four water molecules. The terminal O^{\prime} atom of the cytidine analogue molecule is hydrogen bonded to a water molecule. The glycosyl torsion angle is low-anti ($\chi=$ 176.3°) and the puckering of the cyclopentane ring is C3'-envelope.

Comment

Progress in a recent gene analysis has resulted in the discovery of many important genes which cause genetic diseases. In order to inhibit the expression of the target gene, diagnostic and therapeutic antisense application has been developed, which is based on the doublehelix formation between a particular mRNA fragment of the target gene and its complementary oligodeoxyribonucleotide analogue. Urata et al. (1993) solved by NMR studies the molecular structure of the heterochiral dodecadeoxynucleotide d(CGCGAATTCGCG), which has a single 'chiral defect' at the G4 residue and whose sugar moiety has an unnatural I. chirality, and demonstrated that the unnatural G 4 residue formed stable Watson-Crick-type base pairing with the natural C9 residue, with S-type sugar geometry ($\mathrm{C} 2^{\prime}$-endo) and a low-anti $\left(\chi\right.$ ca $\left.180^{\circ}\right)$ glycosyl conformation in a righthanded B -form duplex. These studies may give a new insight into the chemistry of the antisense application of oligodeoxyribonucleotides having a low-anti glycosyl conformation.

As part of the synthesis of oligodeoxyribonucleotide analogues, cyclocarbacytidine, (I), was synthesized by cyclization between the C6 atom of the base and the C^{\prime} atom (adjacent to Cl^{\prime}) of the cyclopentane ring for fixation of the glycosyl torsion angle in the lowanti region. This paper deals with the crystal structure analysis of (\pm)-cyclocarbacytidine.

(I)

An ORTEPIII (Burnett \& Johnson, 1996) drawing of cyclocarbacytidine is shown in Fig. 1, and for comparison, the molecular structure of cytidine determined by Furburg (1951) is shown in Fig. 2. The conformational details are given in Table 1. Normally the glycosyl torsion angle of a nucleoside with an anti conformation is in the range ca 90 to ca $270^{\circ}[1 \pm)$-anticlinal and
(\pm)-antiperiplanar] (Saenger, 1988), and that of cyclocarbacytidine is fixed at the low-anti conformation ($\chi=$ 176.3°) by cyclization with the O 6 atom between the C6 atom of the cytosine base and the C^{\prime} atom (adjacent to Cl^{\prime}) of the cyclopentane ring instead of the $\mathrm{O} 4^{\prime}$ atom of the deoxyribose ring in the case of the natural nucleoside. The puckering of the cyclopentane ring in this compound is of the C^{\prime}-envelope form ($\mathrm{C}^{\prime}{ }^{\prime}$ endo). On the other hand, the crystal structure of cytidine indicated that the glycosyl torsion angle was anti ($\chi=162.6^{\circ}$) and the sugar puckering was of the $\mathrm{C} 3^{\prime}$ endo form (Furburg, 1951). Furthermore, in this crystal, there are three hydrogen bonds which connect neighbouring cyclocarbacytidine molecules and form threedimensional networks, as shown in Table 2.

Fig. 1. An ORTEPIII (Burnett \& Johnson, 1996) drawing of the crystal structure of cyclocarbacytidine. Displacement ellipsoids are plotted at the 80% probability level.

Fig. 2. An ORTEPII (Johnson, 1976) drawing of the crystal structure of cytidine (Furburg. 1951).

Experimental

The title compound was synthesized from uracil according to a method reported previously (Urata et al., 1998) and was recrystallized from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$.

Crystal data
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4} . \mathrm{H}_{2} \mathrm{O}$
$M_{r}=257.25$
Monoclinic
$P 2_{1} / c$
$a=6.870(2) \AA$
$b=20.711(2) \AA$
$c=8.526(1) \AA$
$\beta=100.69(1)^{\circ}$
$V=1192.1(4) \AA^{3}$
$Z=4$
$D_{x}=1.433 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Rigaku AFC- $5 R$ diffractom-
eter
$2 \theta-\omega$ scans

Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.79, T_{\text {max }}=0.95$
2018 measured reflections 1852 independent reflections

1458 reflections with

$$
\begin{aligned}
& \quad I>2 \sigma(I) \\
& R_{\mathrm{mII}}=0.014 \\
& \theta_{\max }=61.86^{\circ} \\
& h=0 \rightarrow 7 \\
& k=0 \rightarrow 23 \\
& l=-9 \rightarrow 9 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 100 \text { reflections } \\
& \text { intensity decay: } 0.02 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R(F)=0.052$
$u \cdot R\left(F^{2}\right)=0.134$
$S=2.259$
1851 reflections
211 parameters
All H atoms refined
$\begin{aligned} & w= 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.037 P)^{2}\right. \\ &+0.31 P] \\ & \text { where } P=\left(F_{u}^{2}+2 F_{i}^{2}\right) / 3\end{aligned}$
$(\Delta / \sigma)_{\text {max }}=0.026$
$\Delta \rho_{\text {max }}=0.695 \mathrm{e}^{\AA^{-3}}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.267 \mathrm{e} \AA^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA^{\circ}{ }^{\circ}\right)$

NI-C6	1.359 (3)	C1ID-C2D	1.539 (4)
$\mathrm{N} 1-\mathrm{C} 2$	1.392 (3)	$\mathrm{C} 1 \mathrm{D}-\mathrm{C} 6 \mathrm{D}$	1.548 (4)
$\mathrm{NI}-\mathrm{Cl} \mathrm{D}^{\text {d }}$	1.469 (3)	C2D-C3D	1.534 (4)
$\mathrm{C} 2-\mathrm{O} 2$	1.233 (3)	C3D-03D	1.436 (3)
$\mathrm{C} 2-\mathrm{N} 3$	1.354 (3)	C3D-C4D	$1.538(4)$
N3-C4	1.353 (3)	C4D - C5D	1.513(4)
C4-N4	1.334 (4)	C4D-C6D	$1.53514)$
C4-C5	1.414 (4)	C5D-O5D	1.433 (4)
C5-C6	1.34 .5 (4)	C6ID-O6I	1.469 (3)
$\mathrm{C6}-\mathrm{O} 6 \mathrm{D}$	1.330 (3)		
C6-N1-C2	121.4(2)	N1-C1D-C6I)	101.1 (2)
C6-N1-CID	112.1 (2)	C2D-C1D-C6D	105.4 (2)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{Cl} \mathrm{D}$	126.5 (2)	$\mathrm{C} 3 \mathrm{D}-\mathrm{C} 2 D-\mathrm{C} 1 D$	104.7 (2)
()2-C2-N3	123.4 (2)	O3D-C3D-C2D	114.0(2)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{N} 1$	118.3(2)	$\mathrm{O} 3 \mathrm{D}-\mathrm{C} 3 \mathrm{D}-\mathrm{C} 4 \mathrm{D}$	$110.2(2)$
N3-C2-N1	118.3 (2)	C2D-C3D-C4D	103.2 (2)
$\mathrm{C} 4-\mathrm{N} 3-\mathrm{C} 2$	119.4 (2)	$\mathrm{C} 5 \mathrm{D}-\mathrm{C} 4 \mathrm{D}-\mathrm{C} 6 \mathrm{D}$	114.9 (3)
$\mathrm{N} 4-\mathrm{C} 4-\mathrm{N} 3$	117.1 (2)	C5D-C4D-C3D	113.0(2)
$\mathrm{N} 4-\mathrm{C} 4-\mathrm{C} 5$	119.7 (2)	$\mathrm{C} 6 \mathrm{D}-\mathrm{C} 41 \mathrm{D}-\mathrm{C} 3 \mathrm{C}$	104.2 (2)

$\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5 \quad 123.3$ (2)	O5D-C5D-C4D	111.4 (3)
C6-C5-C4 115.8(2)	O6D-C6D-C4D	109.8 (2)
O6D-C6-C5 126.7(2)	O6D-C6D-C1D	105.5 (2)
$\mathrm{O} 6 \mathrm{D}-\mathrm{C} 6-\mathrm{Nl} \quad 111.6$ (2)	C4D-C6D-C1D	107.1 (2)
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1 \quad 121.7$ (2)	C6-O6D-C6D	109.8 (2)
$\mathrm{NI}-\mathrm{ClD}-\mathrm{C} 2 \mathrm{D} \quad 113.0(2)$		
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{Cl}$ - -C 2 D	-71.5(3)	
$\mathrm{C} 1 D-\mathrm{C} 2 \mathrm{D}-\mathrm{C} 3 \mathrm{D}-\mathrm{C} 4 D$	-38.4 (3)	
C2-N1-C1D-C6D	176.3 (3)	
$\mathrm{C} 2 \mathrm{D}-\mathrm{C} 3 \mathrm{D}-\mathrm{C} 4 \mathrm{D}-\mathrm{C} 5 \mathrm{D}$	162.6 (3)	
C6-Ni-C1D-C2D	111.9 (3)	
$\mathrm{C} 2 \mathrm{D}-\mathrm{C} 3 \mathrm{D}-\mathrm{C} 4 \mathrm{D}-\mathrm{C} 6 \mathrm{D}$	37.2 (3)	
C6-NI-C1D-C6D	-0.2 (3)	
O3D-C3D-C4D-C5D	-75.4 (3)	
N1-C6-O6D-C6D	-1.4 (3)	
O3D-C3D-C4D-C6D	159.3 (2)	
C5-C6-O6D-C6D	178.6 (3)	
$\mathrm{C} 3 \mathrm{D}-\mathrm{C} 4 \mathrm{D}-\mathrm{C} 5 \mathrm{D}-\mathrm{O} 5 \mathrm{D}$	178.7 (3)	
$\mathrm{N} 1-\mathrm{Cl} D-\mathrm{C} 2 \mathrm{D}-\mathrm{C} 3 \mathrm{D}$	-84.9 (3)	
C6D-C4D-C5D-O5D	-62.0) (4)	
$\mathrm{C} 6 D-\mathrm{C} 1 \mathrm{D}-\mathrm{C} 2 \mathrm{D}-\mathrm{C} 3 D$	24.6 (3)	
$\mathrm{C} 3 D-\mathrm{C} 4 \mathrm{D}-\mathrm{C} 6 \mathrm{D}-\mathrm{C} 1 D$	-22.1 (3)	
$\mathrm{N} 1-\mathrm{ClD}-\mathrm{C} 6 \mathrm{D}-\mathrm{C} 4 \mathrm{D}$	116.4 (2)	
$\mathrm{C} 3 \mathrm{D}-\mathrm{C} 4 \mathrm{D}-\mathrm{C} 6 \mathrm{D}-\mathrm{O} 6 \mathrm{D}$	92.0 (3)	
$\mathrm{N} 1-\mathrm{Cl}$ - $\mathrm{C} 6 \mathrm{D}-\mathrm{O} 6 \mathrm{D}$	-0.5 (3)	
C5D-C4D-C6D-C1D	-146.2 (3)	
$\mathrm{C} 2 \mathrm{D}-\mathrm{C} 1 \mathrm{D}-\mathrm{C} 6 \mathrm{D}-\mathrm{C} 4 \mathrm{D}$	-1.5 (3)	
C5D-C4D-C6D-O6D	-32.1 (3)	
$\mathrm{C} 2 \mathrm{D}-\mathrm{C} 1 \mathrm{D}-\mathrm{C} 6 \mathrm{D}-\mathrm{O} 6 \mathrm{D}$	-118.4 (2)	
C1D-C6D-O6D-C6	1.2 (3)	
$\mathrm{C} 1 \mathrm{D}-\mathrm{C} 2 \mathrm{D}-\mathrm{C} 3 \mathrm{D}-\mathrm{O} 3 \mathrm{D}$	-158.0(2)	
C4D-C6D-O6D-C6	-113.9(3)	

Table 2. Contact distances (\AA)

$\mathrm{OW} \cdots \mathrm{O} D$	$2.793(4)$	$\mathrm{N} 3 \cdots \mathrm{O} 3 D^{\prime \prime \prime}$	$2.871(3)$
$\mathrm{O} 2 \cdots \mathrm{~N} 4^{\mathrm{i}}$	$2.893(4)$	$\mathrm{OW} \cdots \mathrm{N} 3^{11}$	$3.168(4)$
$\mathrm{N} 4 \cdots \mathrm{O} D^{11}$	$2.821(4)$	$\mathrm{OW} \cdots \mathrm{O} \mathrm{B}^{\text { }}$	$2.821(4)$

Symmetry codes: (i) $1+x, y, z$; (ii) $1-x, y-\frac{1}{2}, \frac{3}{2}-z:$ (iii) $2-x,-y, 2-z$: (iv) $1-x,-y, 1-z ;($ v $) x-1, \frac{1}{2}-y, z-\frac{1}{2}$.

Intensities were measured with a scan rate of $4^{\circ} \mathrm{min}^{-1}$ in 2θ and a scan width of $d(2 \theta)=(1.2+0.15 \tan \theta)^{\circ}$. Background intensities were measured for 4 s at each side of a scan. The initial E map gave a partial structure around the pyrimidine skeleton. The positions of the remaining non -H atoms were located stepwise from the subsequent Fourier syntheses. The structure was refined by the block-diagonal least-squares procedure and the full-matrix least-squares refinement was carried out with SHELXL93 (Sheldrick, 1993).

Data collection: RigakulAFC Diffractometer Control Software (Rigaku Co. Ltd, 1997). Cell refinement: RigakulaFC Diffractometer Control Software. Data reduction: UNICS (Universal Crystallographic Computation Program System Osaka, 1979). Program(s) used to solve structure: MULTAN87 (Debaerdemaeker et al., 1987). Molecular graphics: ORTEPII (Johnson, 1976) and ORTEPIII (Burnett \& Johnson, 1996).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DE1077). Services for accessing these data are described at the back of the journal.

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL6895. Oak Ridge National Laboratory, Tennessee, USA.

Debaerdemaeker, T., Germain, G., Main, P., Tate, C. \& Woolfson, M. M. (1987). MULTAN87. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Universities of York, England, and Louvain. Belgium.
Furburg, S. (1951). Acta Cryst. 3, 325-331.

Johnson. C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
North, A. C. T., Phillips, D. C. \& Mathew's, F. S. (1968). Acta Cryst. A24, 351-359.
Rigaku Co. Ltd (1997). Rigaku/AFC Diffractometer Control Software. Rigaku Co. Ltd, Akishima, Tokyo. Japan.
Saenger, W. (1988). Principles of Nucleic Acid Structure, pp. 21-23. Berlin: Springer-Verlag.
Sheldrick. G. M. (1993). SHELXL93. Program for the Refinement of Crustal Structures. University of Göttingen, Germany.
Universal Crystallographic Computation Program System Osaka (1979). UNICS. Computing Center, Osaka University, Japan.

Urata, H.. Miyagoshi, H., Kakuya, H., Tokumoto. H.. Kawahata, T., Otake, T. \& Akagi, M. (1998). Chem. Pharm. Bull. 46, 458-46l.
Urata, H., Ueda. Y.. Suhara, H., Nishioka, E. \& Akagi. M. (1993). J. Am. Chem. Soc. 115. 9852-9853.

Acta Cryst. (1998). C54, 982-984

Methyl Ester of the Bioactive Metabolite of Thromboxane A2 Receptor Antagonist ON-579

Masakazu Sato, Keita Matsumoto, Yutaka
Kawashima and Kazuyuki Tomisawa

Medicinal Research Laboratories, Taisho Pharmaceutical
Co. Ltd, 1-403 Yoshino-cho, Ohmiya, Saitama 330, Japan.
E-mail: s11400@ccm.taisho.co.jp
(Received IO July 1997: accepted 6 January 1998)

Abstract

The title compound, methyl $(R S)$-\{4-[2-(4-chlorophenylsulfonylamino) ethylsulfinyl]-2,6-difluorophenoxy\}acetate, $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{ClF}_{2} \mathrm{NO}_{6} \mathrm{~S}_{2}$, crystallizes in space group $P 2_{1} / c$. In the crystal, the enantiomeric molecules, related by a center of symmetry, form pairs joined by N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

In the course of our investigation of the pharmacodynamics of 4-[2-(4-chlorophenylsulfonylamino)ethylthio]-2,6-difluorophenoxyacetic acid ($\mathrm{ON}-579$), which is a novel thromboxane A2 antagonist (Sato et al., 1995), the corresponding sulfoxide, namely ON-579M2, was detected as a major and bioactive metabolite in animal urines. This paper reports the crystal structure of the synthetic racemate, (I), of the title compound.

(I)

